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Introduction

Microwave measurements of soil moisture are not being obtained at the required spatial Earth resolution with current

technology. The Low "Earlh Orbit Microwave Radiometry Workshop held in Hampton, Virginia, September 22-24, 1992

(ref. 1), identified measurements of soil moisture at a resolution of 10 km as the general science driver. Recently, new
novel designs for lightweight reflector systems have been developed using deployable inflatable antenna suuctures

which could enable lightweight real-aperture radiometers. In consideration of this, a study was conducted at the NASA

Langley Research Center (LaRC) to determine the feasibility of developing a microwave radiometer system using

inflatable reflector antenna technology to obtain high spatial resolution radiometric measurements of soil moisture from

low Earth orbit and which could be used with a small and cost effective launch vehicle. The required high resolution with
reasonable swath width coupled with the L-band measurement frequency for soil moisture dictated the use of a large (30

meter class) real aperture antenna in conjunction with a pushbroom antenna beam configuration and noise-injection type

radiometer designs at 1.4 and 4.3 GHz to produce a 3.70 kilometer cross-track swath with a 10 kilometer resolution as

shown in figure 1, that could be packaged for launch with a Titan lI class vehicle. This study includes design of the

inflatable structure, control analysis, structural and thermal analysis, antenna and feed design, radiometer design, payload

packaging, orbital analysis, and electromagnetic losses in the thin membrane inflatable materials. The resulting system

characteristics are listed in Table I. Details of these study elements are discussed in the following.
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Figure 1. inflatable antenna radiometer concept
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Table 1. Inflatable antenna radiometer ayetam charactarlstic.=

Inflatable Structure Technology

A 36-m diameter inflatable structure shaped by inflation

pressure and a toms to provide an off-axis paraboloid

reflector, specified by LaRC, was designed by L'Garde Inc.

(ref. 2). The reflector is a metallized portion of the outer
.3 nail Kapton inflatable surfaces. The total weight of the

inflatable structure is 82.3 pounds and occupies 1600 in3

of volume. The reflector inflatable requixes only 6.34

pounds of gas in _der to provide the correct reflector

shape during a 2 year mission life. The toms is fabricated

of a gelatin Kevlar material, which rigidizes by the

evaporation of water in the material. Three rigidizable

struts, designed to provide the correct distance between
the antenna feed and the reflector surface, arc fabricated
the same material as the toms. The struts are 18 in. in

diameter and .015-in. thick. Since the reflector is an off-

axis type, two of the struts are 71.35 ft. in length and the

other strut is 76.24 ft in length. L'Garde proposes using

jack screws to adjust the distance from the reflector to the

feed. The canister for housing the inflatable measures 53
x 42 x 20 inches.

Radiometer Systems Technology

Reflector and Feed Design

The configuration of the conceptional antenna design is

shown in figure 2. The reflector for the antenna consists

of two aluminized "strips" on the surface of the inflatable.



The surface is generated by rotating a parabola, with a

focal length of 13 meters, about a line located a distance

of 27.5 meters from the parabola vertex to produce a

cylindrical surface. Tile projected width of the aluminized

strips is 10 meters, with an offset of 2 meters. The two
metallized strips are illuminated by two separate feed

panels. The reflective portion of the antenna should have
an rms surface roughness less than 0.02 wavelengths at

the highest operating frequency. At 4.3 GHz, this surface

smoothness requirement becomes 0.14 centimeters rms.

The relative positional accuracy and alignment of the feed

panels with the reflective surfaces are determined by the

highest operating frequency and preliminary results

indicate that an accuracy of +0.5 wavelengths and +0.5 °

should be sufficient.
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Figure 2. Antenna sketch

The feed panels are made up of flat square panels joined
together to approximate the conical surfaces. Each of the

16 larger flat panels is a printed circuit array feed to

produce one L-band (1.413 GHz) antenna beam reflected

from one of the metailized strips on the antenna surface.

Each of the 32 smaller flat panels is also a printed cizcuit

array feed to produce one C-band (4.3 GHz) beam. Each of

the feed arrays illuminates a slightly different portion of

the metallized surface and produces a beam pointing in a

slightly different Earth location. 'I'ne feed arrays are
staggered to allow the interleaving of beams from the two

separate reflective surfaces to accomplish the desired

contiguous coverages.

Radiometer Design

A pushbroom radiometer design is proposed. The
radiometer utilizes a balanced Dicke noise injection

technique to reduce calibration periods to once per day (or

once per orbit as a minimum). The design employed time

multiplexing of eight antenna beams per radiometer to
reduce weight and packaging. For spatial resolutions of

10 km and 5 km respectively at 1.4 and 4.3 GHz; two

samples per resolution cell (Nyquist sampling criteria);

and 7 km per sec ground track velocity; the radiometer can

be time multiplexed between eight beams and still have

sufficient integration time to meet the radiometric

sensitivity requirement of less than 1 K. The radiometer

system consists of two major assemblies; the feed

assembly and the electronics assembly. The feed

assembly consists of the feed panels, the noise modules,

noise source modules, and multiplexers. The electronics

assembly, which is located in the spacecraft bus, contains
the radiometer receivers, digital processor, data

subsystem, and power supplies. The electronics assembly

also provides the interface to the spacecraft's data and

command systems. There are 32 antenna beams at 1.4
GHz and 64 antenna beams at 4.3 GHz. These antenna

beams are arranged across track in a pushbroom

Configuration. The assembly also contains one data

subsystem and one power subsystem along with the
components for interfacing with the spacecraft systems.

Eiectromagnetics Loss in Metaliized Flints
Because an inflatable membrane is not

electromagneticaily reflective by design, a metal film is
added to membranes used as reflectors. If the metal film is

not conductive or thick enough, the metal layer will suffer

losses in the radiation gathered by the reflector. For a

radiometer whose signal is composed of thermal noise,
these losses cause a measurement error. For this reason, a

program of analysis and measurement was undertaken to
determine the loss behavior of candidate metallized film

reflectors with gold, silver, and aluminum deposited at
thicknesses from 100 Angstrom to 3000 Angstrom.

From preliminary data, it can be concluded that, clearly,
the thickest metal membranes present very low losses.

Further, the gold and silver results are superior to the
aluminum.

Systems Analysis

Packaging and Orbital Analysis

The spacecraft is shown stowed in the Titan !I-(3

heatshield in figure 3(a). A center support structure

mounted at the vehicle interface supports all of the

satellit_ systems. Electronics component supports and

the inflatable reflector stowage container will be integral

parts of the structure. The solar panels axe stowed at the
lower end of the structure and the feed system is attached

to the top. The inflatable strut rigid deployable

outriggers are folded against the center structure for
launch. The hinged feeds utilize most of the available

diameter of the heatshield.

Figure 3. Spacecraft configuration



On deployment, the bus separates from the launch vehicle

and then deploy the solar panels as shown in figure 3(b).

Then the feeds are deployed partially until the inflatable
strut outriggers can be rotated to the final position. Next,

the inflatable antenna cover is released and outriggers

deployed. The antenna is then inflated and the

deployment of the feeds completed. The radiometer is

then ready to be oriented in the cross-track configuration.

The orbital analysis used a projected area along the

velocity vector of 228m 2 and spacecraft of 2090 kg.

Reboost expendables were minimized by operating as
high as possible within acceptable science limits. The
calculations included variations due to current models of

long range solar cycle. The results showed (1) pitch
variations (worst case) of 20 ° @ 800 km and 45 ° @ 700

km and (best case) of 0 ° @ 800 kin and 45 ° @ 450 kin; (2)

required reboost fuel for 3 year lifetime (worst case) 182

kg for 3/1/2000 launch (assumes reboost to 800 km on 1

month cycle); (3) full ground coverage time @ 800 km alt,

60 hours (small gaps at poles); and (4) launch vehicle

proposed - Martin Marietta Titan II S-10 GEMS.

Structure, Thermal, and Control Analysis

Structural investigations of the radiometer were two-

phased. The first phase study showed that a three strut

design was equal or superior in strut and tot-us bending

properties, torsional rigidity, and mass; also, it will not

introduce warping into the plane of the torus from strut
deflections as is possible with a four strut design. The

second phase of the study investigated the structural
characteristics of the 37-meter cross-track inflatable

antenna radiometer concept. Analytical studies with a

simplified model show significant maximum thermal

distortions of at least 8-10 mm are predicted. These

results warrant further study.

An analysis of the 36-meter inflatable antenna radiometer

was performed to determine the thermal behavior of an
inflatable structure on-orbit. Thermal models (PATRAN,

TRASYS, SINDA) were used to predict the temperature
distribution of the reflector surface, canopy, torus, and

struts and their variation throughout a typical orbit.

Reflector temperatures range from 120°F at the subsolar

point to 260°F in the Earth's shadow. Large temperature

gradients occur just before and just after Earth shadow.

"l'he torus will experience similar variation in temperature
as a function of orbit position. At the cold point in oi-bit,

back side torus temperatures reach -285°F while the

reflector side temperatures are-30 to -50°F. Some rather

large gradients are also present on the struts at certain

points in the orbit due to shadowing from either the

antenna or the spacecraft bus.
A simulation was conducted to see the effect of

disturbances on the shape of the antenna's support torus.

Disturbances were simulated as torques applied to the

spacecraft bus near the mounting points of each strut. The

magnitude of the oscillations found are small, primarily

because the mass of the spacecraft bus is an order-of-

magnitude larger than the mass of the antenna and so

dominates the dynamic response. However, it appears

that active control from the spacecraft bus can be used to

increase damping in the structure's low order modes.

Concluding Remarks

The present studies indicate that, by utilizing a novel

technique to obtain a large spaceborne real aperture
reflector, pushbroom radiometer systems can be
developed that provide passive microwave remote sensing

at a spatial resolution of 10 km of soil moisture from

space. This system could be launched with a small

expendable launch vehicle, such as a Titan II. While no
detailed analyses of costs were made, the systems

considered herein are believed to be greater than $100

million. The Langley Research Center is currently

investigating the merits of a smaller size inflatable
antenna mission on the order of 14.7 meters in terms of

what science could be obtained with a payload package
that uses a smaller vehicle and costs less than $100

million. Other current investigations, which are

underway at the Langley Research Center, are the

performance of advanced materials for use as radiometer
antenna reflectors and research on stability of radiometer

designs and components to reduce on-orbit calibration
times.
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